LOA - Laboratoire d'Optique Atmosphèrique - UMR 8518

France Centre de recherche public
Accréditation CIR
Contact principal
Téléphone : 33(0)3 20 43 45 32
Mail : direction-loa@univ-lille1.fr
Adresse :
Bât. P5
59655 Villeneuve d'Ascq
France
Consultez cette fiche en intégralité ?
Consultez cette fiche et près de 50 000 autres fiches de Centres de Recherche dans plus de 30 pays européens sur Expernova.com !

Inscrivez-vous ou contactez-nous pour une démonstration personnalisée.
Description
(Extrait du site web)
Activité Générale :

L'optique atmosphérique cherche à modéliser la propagation à travers l'atmosphère de la lumière visible reçue du soleil et de la lumière infrarouge émise par l'ensemble des surfaces et de l'atmosphère terrestres. Les travaux menés au LOA dans ce domaine s'insèrent dans l'étude globale du climat.

Un premier objectif est de quantifier le rôle de ce rayonnement visible et infrarouge dans les échanges énergétiques de la planète, en particulier de préciser le rôle des nuages dans le bilan radiatif de la terre dont ils constituent un facteur essentiel.

Un second axe de recherche porte sur la caractérisation à l'échelle du globe de différents paramètres qui sont en relation directe avec l'évolution climatique (nuages, aérosols, surfaces), en utilisant principalement l'observation satellitaire.
Les travaux menés dans ce contexte mettent en oeuvre:

* La conception de logiciels permettant de simuler le transfert du rayonnement, à l'aide de modèles du système terre - atmosphère.
* L'analyse d'observations acquises par les capteurs satellitaires existants, le plus souvent sous forme d'images traitées sur ordinateur, et la conception d'expériences satellitaires nouvelles.
* La réalisation de campagnes d'observation de terrain, utilisant des appareillages développés par le laboratoire, mis en oeuvre au sol ou à partir d'avions ou de ballons stratosphériques, et destinés à valider les modèles ou à mettre en évidence les processus atmosphériques.

Le LOA est une unité Mixte de Recherches (UMR/CNRS 8518). Il fait partie de la Fédération de Recherches (FR1818) Milieux naturels et anthropisé Flux et dynamique.

Quelques documents de Laboratoire d'Optique Atmosphèrique
Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
2008
Auteurs : P. F. Bernath, C. D. Boone, S. M. Brohede, Valery Catoire, M. Coffey, E. DUPUY, W. H. Daffer, M. De Mazière, P. Duchatelet, N. Glatthor, D. W. T. Griffith, James W. HANNIGAN, F. Hase, N. Huret, M. Höpfner, N. B. JONES, Kenneth W. JUCKS, I. KRAMER, A. Kagawa, Y. Kasai, T. E. Kerzenmacher, J. Kuttippurath, H. Küllmann, S. MIKUTEIT, Donal P. MURTAGH, E. Mahieu, G. L. Manney, C. A. Mclinden, Y. Mebarki, C. Piccolo, P. Raspollini, M. Ridolfi, R. Ruhnke, Michelle L. SANTEE, C. Senten, D. Smale, K. Strong, Matthew TOOHEY, C. Tétard, J. Urban, T. Von Clarmann, K. A. Walker, M. A. Wolff et S. Wood
Masquer le résumé
The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv (±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within ±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of -1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofisica de Andalucia (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching -0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically -0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
Keywords :
Source : HAL  

Measurements of UV Aerosol Optical Depth in the French Southern Alps
2008
Auteurs : Colette Brogniez, V. Buchard, T. Cabot, A. De La Casinière, F. Guirado et J. LENOBLE
Masquer le résumé
Routine measurements of global and diffuse UV irradiances at Briançon station (1310 m a.s.l.) are used to retrieve the direct solar irradiance and the aerosol optical depth (AOD), for cloudless days. Data of three years (2003, 2004, 2005) are analyzed; the results confirm those of a preliminary analysis for 2001, 2002.

The atmosphere is very clear in winter, with AODs between 0.05 and 0.1. The turbidity increases slowly in spring, starting end of February, with AODs around 0.2–0.3 in mid summer, some values reaching 0.4. A similar behaviour is observed for all years, with somewhat higher values in late summer for the year 2003.
Keywords :
Source : HAL  

Validation of UV-visible aerosol optical thickness retrieved from spectroradiometer measurements
2008
Auteurs : Frédérique Auriol, Colette Brogniez et V. Buchard
Masquer le résumé
Global and diffuse UV-visible solar irradiances are routinely measured since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA) located in Villeneuve d'Ascq, France. The analysis of the direct irradiance derived by cloudless conditions enables retrieving the aerosol optical thickness (AOT) spectrum in the 330–450 nm range. The site hosts also sunphotometers from the AERONET/PHOTONS network performing routinely measurements of the AOT at several wavelengths. On one hand, comparisons between the spectroradiometer and the sunphotometer AOT at 440 nm as well as, when available, at 340 and 380 nm, show good agreement. On the other hand, the AOT's spectral variations have been compared using the Angström exponents derived from AOT data at 340 and 440 nm for both instruments. The comparisons show that this parameter is difficult to retrieve accurately due to the small wavelength range and due to the weak AOT values. Thus, AOT derived at wavelengths outside the spectroradiometer range by means of an extrapolation using the Angström parameter would be of poor value, whereas, spectroradiometer's spectral AOT could be used for direct validation of other AOT, such as those provided by satellite instruments.
Keywords :
Source : HAL  

Delivery of aerosol products for assimilation and environmental use
DAEDALUS
2003 - 2005

Sujets :
Resources of the Sea, Fisheries, Forecasting, Meteorology, Environmental Protection
Participants :
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Research

URA 0713 - LABORATOIRE D'OPTIQUE ATMOSPHÉRIQUE Laboratoire d'Optique Atmosphérique (URA 713) UER de Physique Fondamentale Université de Lille 59655
FRANCE
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE NEDERLAND
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE
Other

P.O. Box 201 10,Wilhelminalaan 10 3730 AE
NEDERLAND
BELGIAN INSTITUTE FOR SPACE AERONOMY BELGIQUE-BELGIË
BELGIAN INSTITUTE FOR SPACE AERONOMY
Research,Other

3,Ringlaan 3 1180
BELGIQUE-BELGIË
NORWEGIAN INSTITUTE FOR AIR RESEARCH NORGE
NORWEGIAN INSTITUTE FOR AIR RESEARCH
Research,Other

P.O. Box 100 Instituttveien 18 2027
NORGE
NETHERLANDS ORGANISATION FOR APPLIED SCIENTIFIC RESEARCH - TNO NEDERLAND
NETHERLANDS ORGANISATION FOR APPLIED SCIENTIFIC RESEARCH - TNO
Research,Other

TNO PHYSICS AND ELECTRONICS LABORATORY P.B. 6031 63,Oude Waalsdorperweg 63 2509 JG
NEDERLAND
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE FRANCE
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE
Education

UMR 8518 - LABORATOIRE D'OPTIQUE ATMOSPHÉRIQUE Bètiment P5 59655
FRANCE
UNIVERSIDADE DE EVORA PORTUGAL
UNIVERSIDADE DE EVORA
Education

CENTRO DE GEOFISICA DE EVORA PO Box 94 Rua Romao Ramalho 59 7000-671
PORTUGAL
COMMISSION OF THE EUROPEAN COMMUNITIES ITALIA
COMMISSION OF THE EUROPEAN COMMUNITIES
Research

INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY CLIMATE CHANGE UNIT Via Enrico Fermi 1 21020
ITALIA
Laboratoire d'Optique Atmosphèrique
Laboratoire d'Optique Atmosphèrique


Royal Netherlands Meteorological Institute
Royal Netherlands Meteorological Institute


Belgian Institute for Space Aeronomy
Belgian Institute for Space Aeronomy


Norwegian Institute for Air Research
Norwegian Institute for Air Research


NETHERLANDS ORGANISATION FOR APPLIED SCIENTIFIC RESEARCH
NETHERLANDS ORGANISATION FOR APPLIED SCIENTIFIC RESEARCH


Hide objectives
Atmospheric aerosols affect human health, continental and marine ecosystems, visibility, and the Earth's climate, requiring dedicated monitoring of their properties. DAEDALUS is a focused project to make an inventory of existing data relevant to aerosol monitoring, assess the users' needs at the European level interims of troposphere and stratospheric aerosol properties, evaluate the scientific, technical, and institutional efforts needed to meet the users' needs, match the available aerosol data products with the information needed by the group of users, and improve methodologies for making optimal use of satellite data and for assimilating aerosol data in transport models. DAEDALUS will provide the necessary impetus for designing long-term sustainable and fully operational European monitoring of aerosol properties at regional and global scales over sea and over land, as foreseen in GMES.

Source : Cordis  

European Stratospheric Monitoring Stations in the ALPS II
ESMOS/ALPS II
1996 - 1998

Sujets :
Forecasting, Environmental Protection, Measurement Methods, Meteorology
Participants :
BELGIAN INSTITUTE FOR SPACE AERONOMY BELGIQUE-BELGIË
BELGIAN INSTITUTE FOR SPACE AERONOMY
Research,Other

3,Ringlaan 3 1180
BELGIQUE-BELGIË
Centre National de la Recherche Scientifique (CNRS) FRANCE
Centre National de la Recherche Scientifique (CNRS)
Non Commercial

Institut National des Sciences de l'Univers Observatoire de Bordeaux (INSU 6) BP 89 Université de Bordeaux 33270
FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Research

UPR 3501 - SERVICE D'AÉRONOMIE BP 3 Route des Gètines 92371
FRANCE
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. DEUTSCHLAND
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
Research

INSTITUT FUER ATMOSPHAERISCHE UMWELTFORSCHUNG EV Kreuzeckbahnstrasse 19 82467
DEUTSCHLAND
UNIVERSITY OF BERNE SCHWEIZ/SUISSE/SVIZZERA
UNIVERSITY OF BERNE
Education,Other

INSTITUTE OF APPLIED PHYSICS 5,Sidlerstrasse 5 3012
SCHWEIZ/SUISSE/SVIZZERA
UNIVERSITÀ DEGLI STUDI - L'AQUILA ITALIA
UNIVERSITÀ DEGLI STUDI - L'AQUILA
Education,Other

DIPARTIMENTO DI FISICA Via Vetoio 10, Coppito 67010
ITALIA
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE FRANCE
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE
Education

UMR 8518 - LABORATOIRE D'OPTIQUE ATMOSPHÉRIQUE Bètiment P5 59655
FRANCE
UNIVERSITE DE LIEGE BELGIQUE-BELGIË
UNIVERSITE DE LIEGE
Education

INSTITUTE OF ASTROPHYSICS AND GEOPHYSICS GROUPE INFRA-ROUGE DE PHYSIQUE ATMOSPHERIQUE ET SOLAIRE 5,Allee du 6 Aout, Bat. B5c 4000
BELGIQUE-BELGIË
NORWEGIAN INSTITUTE FOR AIR RESEARCH NORGE
NORWEGIAN INSTITUTE FOR AIR RESEARCH
Research,Other

P.O. Box 100 Instituttveien 18 2027
NORGE
Laboratoire d'Optique Atmosphèrique
Laboratoire d'Optique Atmosphèrique


Belgian Institute for Space Aeronomy
Belgian Institute for Space Aeronomy


Norwegian Institute for Air Research
Norwegian Institute for Air Research


Hide objectives
To expand the intensive co-ordinated ground-based observations to provide climatological measurements of ozone total amounts and vertical profiles, aerosol vertical distributions, ClO vertical profiles, NO2, NO, reservoirs and long-lived tracers total amounts; - to study the coherence of the ozone vertical profiles database recorded since the mid-eighties. The problem of the possible meteorological bias in the ozone profile retrieved from lidars in the low stratosphere will be addressed; - to identify the processes which drive the variability of ozone over the Alps in the low and middle stratosphere by coupling the ozone vertical profiles obtained at different sites and using dynamical tracers (trajectories, potential temperatures and vorticies); - to study the nitrogen and chlorine budgets with ground-based and satellite measurements to test and validate the stratospheric models; - to assess the impact of heterogeneous chemistry processes on the partitioning of stratospheric species by using ground-based and satellite data combined with 2-D and 3-D modelling studies; - to compare the time series of stratospheric species now available from the Alpine stations with long-term simulation over the last decade; - to contribute to stratospheric studies on the connections of mid-latitude changes with high and low latitudes; - to validate satellite measurements of stratospheric species performed by GOME and possibly ADEOS; - to finalise intercomparisons for aerosol and ClO retrieval methods.

Source : Cordis  

Aerosol complexity in megacities: From size-resolved chemical composition to optical properties of the Beijing atmospheric particles
2009
Auteurs : H. Cachier, Oleg DUBOVIK, B. Guinot, B. Guinot, Marc Mallet, J. C. ROGER et Tong Yu
Masquer le résumé
Megacities need adapted tools for the accurate modeling of aerosol impacts. For this purpose a new experimental data processing has been worked out for Beijing aerosols as case study. Size-resolved aerosol particles were extensively sampled during winter and summer 2003 and subsequently fully chemically characterized. The product is an aerosol model presenting a new particle pattern (mode number, size and chemistry) without any prerequisite constrain either on the mode number or on each mode chemical composition. Six modes were found and five of them consistently appear as internally mixed particles organized around a black carbon or a dust core coated by organic and/or inorganic material. Data were checked by robust comparisons with other experimental data (particle number, sunphotometer-derived derived data). We found the presence of two accumulation modes in different internal mixing and optical calculations show that the Beijing aerosol single scattering albedo (?o # 0.90) is significantly higher than expected. Such an approach would allow realistic modeling of atmospheric particle impacts under complex situations.
Keywords :
aerosol optical properties.
Source : HAL  

Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET)
2012
Auteurs : G. T. ARNOLD, A. AROLA, P. Artaxo, Carol J. BRUEGGE, S. A. CARN, H. CHEN, Oleg DUBOVIK, T. F. Eck, D. M. GILES, Brent N. HOLBEN, Nickolay A. KROTKOV, Goloub PHILLIPPE, Steven PLATNICK, J. S. REID, M. A. RIVALS, R. P. SINGH, Alexander SINYUK, A. SMIRNOV, J. S. Schafer et S. N. TRIPATHI
Masquer le résumé
Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often ∼0.4―0.5 μm radius (volume distribution); the smaller mode, typically ∼0.12 to ∼0.20 μm, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
Keywords :
Cloud fraction ; sampling ; Bias ; remote sensing ; Optical thickness ; trend-surface analysis ; sulfates ; particles ; concentration ; in situ ; Particle size ; Measurement in situ ; droplets ; accumulation ; Stratocumulus cloud ; evaporation ; altitude ; size distribution ; fine-grained materials ; Measuring network ; aerosols ; clouds ; Fog ;
Source : Pascal - INIST  





Automated Data Collection Terms