LOA - Laboratoire d'Optique Atmosphèrique - UMR 8518

France Centre de recherche public
Accréditation CIR
Contact principal
Téléphone : 33(0)3 20 43 45 32
Mail : direction-loa@univ-lille1.fr
Adresse :
Bât. P5
59655 Villeneuve d'Ascq
France
Consultez cette fiche en intégralité ?
Consultez cette fiche et près de 50 000 autres fiches de Centres de Recherche dans plus de 30 pays européens sur Expernova.com !

Inscrivez-vous ou contactez-nous pour une démonstration personnalisée.
Description
(Extrait du site web)
Activité Générale :

L'optique atmosphérique cherche à modéliser la propagation à travers l'atmosphère de la lumière visible reçue du soleil et de la lumière infrarouge émise par l'ensemble des surfaces et de l'atmosphère terrestres. Les travaux menés au LOA dans ce domaine s'insèrent dans l'étude globale du climat.

Un premier objectif est de quantifier le rôle de ce rayonnement visible et infrarouge dans les échanges énergétiques de la planète, en particulier de préciser le rôle des nuages dans le bilan radiatif de la terre dont ils constituent un facteur essentiel.

Un second axe de recherche porte sur la caractérisation à l'échelle du globe de différents paramètres qui sont en relation directe avec l'évolution climatique (nuages, aérosols, surfaces), en utilisant principalement l'observation satellitaire.
Les travaux menés dans ce contexte mettent en oeuvre:

* La conception de logiciels permettant de simuler le transfert du rayonnement, à l'aide de modèles du système terre - atmosphère.
* L'analyse d'observations acquises par les capteurs satellitaires existants, le plus souvent sous forme d'images traitées sur ordinateur, et la conception d'expériences satellitaires nouvelles.
* La réalisation de campagnes d'observation de terrain, utilisant des appareillages développés par le laboratoire, mis en oeuvre au sol ou à partir d'avions ou de ballons stratosphériques, et destinés à valider les modèles ou à mettre en évidence les processus atmosphériques.

Le LOA est une unité Mixte de Recherches (UMR/CNRS 8518). Il fait partie de la Fédération de Recherches (FR1818) Milieux naturels et anthropisé Flux et dynamique.

Quelques documents de Laboratoire d'Optique Atmosphèrique
Estimating the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 A-band.
2009
Auteurs : David Antoine, Philippe DUBUISSON, D. Dessailly et L. Duforet
Pas de résumé disponible
Keywords :
Source : HAL  

Measuring atmospheric composition change
2009
Auteurs : J.D. Allan, J.-L. Attié, U. Baltensperger, I. Barnes, M. Bilde, Jean-Pierre CAMMAS, C. Clerbaux, P.-F. Coheur, M. De Mazière, H.-P. Dorn, D. Fowler, C. Granier, M. Hermann, J. Hjorth, I.S.A. Isaksen, Stefan Kinne, J. Klausen, I. Koren, P. Laj, Paul S. MONKS, T. MULLER, G. Mcfiggans, Samuel Morin, D. Müller, J. Orphal, V.-H. PEUCH, G. Pappalardo, C. Plaß-Duelmer, S. REIMANN, A. Richter, Y. Rudich, Michael Schulz, D. Simpson, Didier TANRE, Geoffrey S. TYNDALL, K. Torseth, M. Van Roozendael, P. Villani, B. Wehner, H. Wex, Alfred Wiedensohler et A.A. Zardini
Masquer le résumé
Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry
Keywords :
Atmosphere ; Instrumentation ; Observation ; Air quality ; Climate
Source : HAL  

Measuring atmospheric composition change
2009
Auteurs : Ali ABO-RIZIQ, J.-L. ATTIE, J D Allan, Urs BALTENSPERGER, Merete BILDE, I. Barnes, W Birmili, C. CLERBAUX, J.P. Cammas, P.-F. Coheur, Josef DOMMEN, M. De Mazière, H.-P. Dorn, Sandro FUZZI, D Fowler, S. Fuzzi, M. GLASIUS, C. GRANIERG, M Hermann, J. Hjorth, Ivar S. A. ISAKSEN, Stefan Kinne, J. Klausen, I. Koren, P. LAJ, A. MASSLING, O. MOEHLER, Paul S. MONKS, D. MULLER, F. Madonna, M. Maione, Michela Maione, G McFiggans, L Mona, S. Morin, T. Müller, J. ORPHAL, G Pappalardo, Vincent-Henri Peuch, C. Plass-Duelmer, S Reimann, A Richter, Y. Rudich, M Schulz, D Simpson, F. Stratmann, Didier TANRE, Geoffrey S. TYNDALL, K. Tørseth, M. Van Roozendael, P Villani, A. WIEDENSOHLER, B. Wehner, H. Wex et A. A. ZARDINI
Masquer le résumé
Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions.
Keywords :
Air quality ; Instrumentation ; Composition ; Atmosphere ; Instrumentation ; Observation ; Air quality ; Climate ;
Source : Pascal - INIST  

Scientific UV data management
SUVDAMA
1996 - 1999

Sujets :
Measurement Methods, Environmental Protection, Forecasting, Meteorology
Participants :
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. DEUTSCHLAND
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
Research

INSTITUT FUER ATMOSPHAERISCHE UMWELTFORSCHUNG EV Kreuzeckbahnstrasse 19 82467
DEUTSCHLAND
NATURAL ENVIRONMENT RESEARCH COUNCIL UNITED KINGDOM
NATURAL ENVIRONMENT RESEARCH COUNCIL
Research,Other

BRITISH ANTARCTIC SURVEY Madingley Road, High Cross CB3 0ET
UNITED KINGDOM
University of Manchester Institute of Science and Technology UNITED KINGDOM
University of Manchester Institute of Science and Technology
Education

Department of Pure and Applied Physics PO Box 88 Sackville Street M60 1QD
UNITED KINGDOM
ARISTOTLE UNIVERSITY OF THESSALONIKI HELLAS
ARISTOTLE UNIVERSITY OF THESSALONIKI
Education

DEPARTMENT OF PHYSICS LABORATORY OF ATMOSPHERIC PHYSICS PO Box 149 Aristotle University of Thessaloniki 54006
HELLAS
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE NEDERLAND
ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE
Other

P.O. Box 201 10,Wilhelminalaan 10 3730 AE
NEDERLAND
BELGIAN INSTITUTE FOR SPACE AERONOMY BELGIQUE-BELGIË
BELGIAN INSTITUTE FOR SPACE AERONOMY
Research,Other

3,Ringlaan 3 1180
BELGIQUE-BELGIË
FINNISH METEOROLOGICAL INSTITUTE SUOMI/FINLAND
FINNISH METEOROLOGICAL INSTITUTE
Research

PO Box 503 Vuorikatu 24 00101
SUOMI/FINLAND
Instituto Nacional de Meteorología ESPAÑA
Instituto Nacional de Meteorología
Non Commercial

Centro Meteorologico de Canarias Occidental Estacion de Vigilancia Atmosferica deIzana PO Box 38071 77,Calle San Sebastian 38071
ESPAÑA
NATIONAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENT NEDERLAND
NATIONAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENT
Research

LABORATORY OF RADIATION RESEARCH PO Box 1 9,Antonie van Leeuwenhoeklaan 9 3720 BA
NEDERLAND
SWEDISH METEOROLOGICAL AND HYDROLOGICAL INSTITUTE SVERIGE
SWEDISH METEOROLOGICAL AND HYDROLOGICAL INSTITUTE
Other

P.O. Box 60101 Folkborgsvägen 1 601 76
SVERIGE
UNIVERSITAET FUER BODENKULTUR WIEN ÖSTERREICH
UNIVERSITAET FUER BODENKULTUR WIEN
Education,Other

INSTITUT FÜR METEOROLOGIE UND PHYSIK 18,Turkenschanzstrasse 18 1180
ÖSTERREICH
LEOPOLD-FRANZENS-UNIVERSITAET INNSBRUCK ÖSTERREICH
LEOPOLD-FRANZENS-UNIVERSITAET INNSBRUCK
Education

INSTITUTE OF MEDICAL PHYSICS 44,Müllerstrasse 44 6020
ÖSTERREICH
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE FRANCE
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE
Education

UMR 8518 - LABORATOIRE D'OPTIQUE ATMOSPHÉRIQUE Bètiment P5 59655
FRANCE
COMMISSION OF THE EUROPEAN COMMUNITIES ITALIA
COMMISSION OF THE EUROPEAN COMMUNITIES
Research,Other

INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY Via Enrico Fermi 1, TP 460 21020
ITALIA
NORUT INFORMATION TECHNOLOGY LTD. NORGE
NORUT INFORMATION TECHNOLOGY LTD.
Research

Forskningsparken Brelvik 9291
NORGE
KARL-FRANZENS-UNIVERSITAET GRAZ ÖSTERREICH
KARL-FRANZENS-UNIVERSITAET GRAZ
Education

INSTITUTE OF METEOROLOGY AND GEOPHYSICS - FACULTY OF SCIENCE 1,Halbarthgasse 1 8010
ÖSTERREICH
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY NORGE
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Education,Other

THE COLLEGE OF ARTS AND SCIENCE DEPARTMENT OF PHYSICS - FACULTY OF INFORMATICS, PHYSICS AND MATHEMATICS Hoegskoleringen 5 7491
NORGE
Università degli Studi di Roma La Sapienza ITALIA
Università degli Studi di Roma La Sapienza
Education

Facoltà di Scienze Matematiche, Fisiche e Naturali Istituto di Fisica Piazzale Aldo Moro 2/5 00185
ITALIA
Laboratoire d'Optique Atmosphèrique
Laboratoire d'Optique Atmosphèrique


Royal Netherlands Meteorological Institute
Royal Netherlands Meteorological Institute


Belgian Institute for Space Aeronomy
Belgian Institute for Space Aeronomy


Hide objectives
The overall goal is to initiate a scientific interpretation of the existing ground-based spectral UV measurements in Europe on the basis of an improved understanding of the radiative transfer processes. This will be realised by means of close interactions between the modelling and the measuring scientific communities by comparing the results of improved radiative transfer modelling calculations with quality-controlled UV measurements performed by stationary instruments at various sites in Europe. The following objectives will be addresses in this project: - to improve the existing radiative transfer models especially in cloudy and variable sky conditions. - to develop the scientific tools to be able to offer valuable responses to specific user's questions such as validity of geographically interpolated UV measurements, trends of biologically weighted UV, daily UV-doses, seasonal variations, etc. - to define the scientific tools and procedures for establishing an experimental 'database' for measured spectral UV-irradiance in Europe. - to define the type and the procedures for ancillary measurements and to continue the implementation of the quality-assurance and quality-control procedures.

Source : Cordis  

Aerosol extinction profiles at 525 nm and 1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS
2008
Auteurs : P. F. Bernath, C. D. Boone, A. Bourassa, Colette Brogniez, D. Degenstein, J. Dodion, M. Fromm, D. Fussen, K. L. Gilbert, D. N. Turnbull, C. Tétard, F. Vanhellemont et K. A. Walker
Masquer le résumé
The Canadian ACE (Atmospheric Chemistry Experiment) mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm) were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present first comparison results for these imager aerosol/cloud optical extinction coefficient profiles, with the ones derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III), one stellar occultation instrument (GOMOS) and one limb sounder (OSIRIS). The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the relative differences indicate that ACE profiles are almost always too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.
Keywords :
Source : HAL  

Indirect radiative forcing due to aerosols over the North Atlantic region.
ACE-2: CLOUDYCOLUMN
1996 - 1998

Sujets :
Environmental Protection, Meteorology
Participants :
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Research

URA 1357 - GROUPE D'ETUDE DE L'ATMOSPHRE MTOROLOGIQUE - GAME Avenue Gustave Coriolis 42, C.N.R. MTtTorologique 31057
FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE FRANCE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Research

UMR 5560 - LABORATOIRE D'AEROLOGIE 14,Avenue Edouard Belin 14 31400
FRANCE
GERMAN AEROSPACE CENTRE DEUTSCHLAND
GERMAN AEROSPACE CENTRE
Research,Other

INSTITUTE OF ATMOSPHERIC PHYSICS Postfach 90 60 58 Muenchener Strasse 20, Oberpfaffernhofen 82234
DEUTSCHLAND
FREIE UNIVERSITAET BERLIN DEUTSCHLAND
FREIE UNIVERSITAET BERLIN
Education

INSTITUT FUER WELTRAUMWISSENSCHAFTEN (WE4) - FACHBEREICH GEOWISSENSCHAFTEN Fabeckstrasse 69 14195
DEUTSCHLAND
SECRETARY OF STATE FOR DEFENCE - MINISTRY OF DEFENCE UNITED KINGDOM
SECRETARY OF STATE FOR DEFENCE - MINISTRY OF DEFENCE
Research,Other

METEOROLOGICAL OFFICE FLIGHT RESEARCH D.E.R.A. Aerospace, Building Y 46 GU14 0LX
UNITED KINGDOM
UNIVERSITÉ BLAISE PASCAL CLERMONT-FERRAND II FRANCE
UNIVERSITÉ BLAISE PASCAL CLERMONT-FERRAND II
Education,Other

LABORATOIRE DE MÉTÉOROLOGIE PHYSIQUE BP 185 Avenue des Landais 24 63177
FRANCE
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE FRANCE
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF LILLE
Education

UMR 8518 - LABORATOIRE D'OPTIQUE ATMOSPHÉRIQUE Bètiment P5 59655
FRANCE
University of Manchester Institute of Science and Technology (UMIST) UNITED KINGDOM
University of Manchester Institute of Science and Technology (UMIST)
Education

Department of Pure and Applied Physics Physics Department PO Box 88 Sackville Street M60 1QD
UNITED KINGDOM
Laboratoire d'Aérologie
Laboratoire d'Aérologie


Laboratoire de Météorologie Physique
Laboratoire de Météorologie Physique


Laboratoire d'Optique Atmosphèrique
Laboratoire d'Optique Atmosphèrique


German Aerospace Center
German Aerospace Center


Hide objectives
Cloudy-Column is one of five projects which constitute the European contribution to the second Aerosol Characterisation Experiment (ACE-2) of the International Global Atmospheric Chemistry Project (IGAC). Cloudy-Column is specifically dedicated to the study of the indirect effect. The objective is to develop parameterisations of marine extended stratocumulus for climate models, that include explicitly the characteristics of the aerosol background and their effects on cloud radiative properties.

Source : Cordis  

Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign
2012
Auteurs : Brian CAIRNS, Jacek CHOWDHARY, Brian Cairns, Jacek Chowdhary, Kirk KNOBELSPIESSE, Kirk Knobelspiesse, Michael I. MISHCHENKO, Michael I. MISHCHENKOL, Matteo OTTAVIANI, Matteo Ottaviani, Jens REDEMANN, Larry TRAVIS, L. Travis, Fabien WAQUET et Fabien Waquet
Masquer le résumé
For remote sensing of aerosol over the ocean, there is a contribution from light scattered under water. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.
Keywords :
Modeling ; models ; Polarized radiation ; polarization ; Underwater ; distribution ; plankton ; Type ; color ; variations ; Content ; biomass ; brightness ; Light ; marine environment ; aerosols ; data ; analysis ; radiance ; sea water ; ocean ; Pelagic zone ; remote sensing ; Multispectral detection ; Sensitivity ; Remote sensing ; Polarization ; RSP ; MILAGRO ; Aerosol ; Hydrosol ; Ocean color ; Case-1 waters ; Bio-optics ; Chlorophyll a ; CDOM ; Plankton ; Scattering ; Radiative transfer ;
Source : Pascal - INIST  





Automated Data Collection Terms